Abstract

The objective in current design practice for parking structures is that energy is dissipated through the formation of plastic hinges at the base of shear walls while floor diaphragms remain elastic and are vertically supported by a combination of shear walls and gravity resisting columns. Unfortunately, this objective is not always achieved due to inaccuracies in current methods for calculating demands on shear walls and in calculating the capacity of shear walls (IBC 2003, ACI code). When demands are overestimated and capacity underestimated, then diaphragm can fail prior to flexural yield of shear walls as was observed in several parking structures in the 1994 Northridge earthquake. Eigenvalue and inelastic dynamic response analyses were performed in order to investigate the effects of diaphragm flexibility on wall responses and of wall overstrength on diaphragm responses. The elongated periods of parking structures due to diaphragm flexibility were found to significantly decrease seismic force demand on shear walls relative to what is calculated using codes of practice in which diaphragms are assumed to be rigid. This leads to the over design of shear walls, which further compounds the problem by preventing the flexural yielding of these walls and thereby driving inelastic response to diaphragms. Various degrees of diaphragm flexibility, shear wall layout, seismic zone, and the number of stories were considered in these analyses. Inelastic static pushover analyses were preformed to investigate the design and capacity evaluation of shear walls. The results illustrate that the shear capacity of walls may be close to twice that calculated by codes of practice. The largest overstrengths were observed in shear walls with low height-to-length ratios in which a significant portion of the lateral load was taken by direct strut action to the foundation and without placing demands on the longitudinal tension reinforcement in the shear walls. The article concludes that methods in codes of practice for calculating shear wall demands and capacities need to be improved if good seismic performance of parking structures is to be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.