Abstract

The design of a monitoring system for detecting explosions is a very topical problem, both for routine data processing at seismological observatories as well as for the monitoring of a Comprehensive Test Ban Treaty. In this framework it is desirable to have the possibility to quantify the presence of the isotropic component in the seismic source. For this purpose a method is presented, which is based on waveform inversion for the full moment tensor retrieval. The method inverts either full waveforms or separate seismic phases and returns the mechanism and time history of a point source. Moreover, it allows to redefine the hypocentral depth of the event and, in a simplistic way, to optimize the structural model as well. In order to model strong laterally heterogeneous structures, different pairs of structural models can be used for each source-receiver path. The source is decomposed into a volumetric part (V), representing an explosive or implosive component, and into a deviatoric part, containing both the double couple (DC) and the compensated linear vector dipole (CLVD) components. The method is applied to an area in central Switzerland and to the network of the Swiss Seismological Service. The events of interest include both earthquakes and explosions. Despite some modelling inadequacies of the source-time function, the explosions can be well identified with the inverted isotropic component in the source, as long as the number of stations used for the inversion is larger than three. The results of the inversion are better for large epicenter-station distances of the order of 40–90 km.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call