Abstract

Summary Random noise attenuation always played an important role in seismic data processing. This study introduces an effective deep learning approach for seismic noise attenuation. The method design a deep feed forward denoising convolutional neural networks with residual learning approach. It learns the noise from the noisy images instead of the latent clean images and obtains the denoised images by subtracting the learned residual from the noisy image. Moreover, the new representative achievements integrated with the residual learning include rectified linear unit and batch normalization. Then, we train the CNN model with poststack field datasets and use the model to suppress the random noise. The results of the field data reveal that the algorithm can remove the random noise and highlight the locally continuous reflectors without losing the resolution of these features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.