Abstract
AbstractA comprehensive analytical model is developed for a pressurized fire sprinkler piping system of a hospital building. A suite of ninety-six artificial triaxial floor acceleration histories is used to generate seismic fragility parameters of the sprinkler piping system. The analytical model accounts for the inelastic behavior of braces, hangers, and wire restrainers. It incorporates an experimentally validated hysteresis model developed, as part of this study, for the moment-rotation relationship of grooved fitted joints. Component fragility parameters were obtained for lateral restrainers, hangers, and pipe joints. Three system-level damage states were defined based on the level of functionality of fire sprinkler systems and severity of leakage after a seismic event and a joint probabilistic model were utilized to obtain system-level fragility parameters. Finally, the seismic fragility of fire sprinkler systems with grooved fit joints is compared to that of a piping system with threaded joints.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.