Abstract

Current standards and guidelines for the design and installation of perimeter-fixed suspended ceilings are briefly reviewed and a summary of common damage in recent earthquakes is provided. Component failure fragility curves have been derived following experiments on typical NZ suspended ceilings, considering loading in tension, compression and shear. A simple method to analyse perimeter-fixed ceilings using peak floor acceleration (PFA) is described, allowing for ceiling system fragility to be obtained from component fragilities. This is illustrated in an example of a 5 storey building. It was found that single rivet end-fixings and cross-tee connections were the most critical elements of the ceilings governing the system capacity. In the design examples it was shown that ceilings at different elevations of the structure showed different probabilities of failure and larger ceiling areas with heavier tiles were most susceptible to damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.