Abstract

In this paper, the seismic collapse probability of special steel moment-resisting frame (SSMRF) structures, designed to 4th edition of Iranian seismic design code, under near fault pulse-like and far fault ordinary ground motions is evaluated through fragility analysis. For this purpose, five sample frames with 3 to 15 stories are designed and imposed to the ground motion excitations with different characteristics. Fragility curves are derived for the sample frames using the results of incremental dynamic analyses. Three sets of near fault ground motion records with different range of pulse period and one set of far fault ordinary records are used in dynamic analyses. Each record set involves ten acceleration time histories on soil type III. Based on the obtained results, it was found that pulse-like motions with medium- and long-period pulses are significantly more destructive than other types of ground motions. Fragility analysis reveals that the average collapse probability for the case study frames under the far and near fault ground motions at the intensity of 0.35g equals to 4.3% and 10.3%, respectively. These values are 15.9%and 38.6%, for PGA of 0.53g. It is also found that the increase in the height, leads to increase in higher modes effect to transfer drift demands toward upper stories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call