Abstract
The objective of this study is to present a novel fragility analysis method that combines principal component analysis (PCA) and the K-means clustering algorithm for a probability assessment of seismic damage in high-pier bridges undergoing pulse-like ground motions. Firstly, the method uses the correlation coefficient and the condition number as judgment indices to eliminate those seismic intensity measures (IMs) with weak correlation and multicollinearity from all 29 of the initial candidate seismic IMs, the optimal combination of IMs that satisfies the requirements for the PCA method is determined. Secondly, the method utilizes PCA to reduce the dimensionality of the optimal combination of IMs to obtain the principal components, after which the K-means algorithm is applied to classify the original group of selected pulse-like ground motions into four classes. Thirdly, a 3D finite element model of the exemplary high-pier bridge is developed via OpenSees, while incremental nonlinear dynamic time-history analyses are conducted to record the maximum cross-section curvatures of high piers under the influence of various categories of ground motions. Finally, based on the analytical procedures used in the increment dynamic analysis (IDA) method, this study develops and compares the fragility curves for the various classes of pulse-like ground motions. The results indicate the necessity of utilizing the PCA and K-means approach for classifying pulse-like ground motions in the seismic fragility analysis of high-pier bridges. This approach also significantly improves the precision and accuracy of damage probability analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have