Abstract
Mapping of seismic and lithologic facies from 3D reflection seismic data plays a key role in depositional environment analysis and reservoir characterization during hydrocarbon exploration and development. Although a variety of machine-learning methods have been developed to speed up interpretation and improve prediction accuracy, there still exist significant challenges in 3D multiclass seismic facies classification in practice. Some of these limitations include complex data representation, limited training data with labels, imbalanced facies class distribution, and lack of rigorous performance evaluation metrics. To overcome these challenges, we have developed a supervised convolutional neural network (CNN) and a semisupervised generative adversarial network (GAN) for 3D seismic facies classification in situations with sufficient and limited well data, respectively. The proposed models can predict 3D facies distribution based on actual well log data and core analysis, or other prior geologic knowledge. Therefore, they provide a more consistent and meaningful implication to seismic interpretation than commonly used unsupervised approaches. The two deep neural networks have been tested successfully on a realistic synthetic case based on an existing reservoir and a real case study of the F3 seismic data from the Dutch sector of the North Sea. The prediction results show that, with relatively abundant well data, the supervised CNN-based learning method has a good ability in feature learning from seismic data and accurately recovering the 3D facies model, whereas the semisupervised GAN is effective in avoiding overfitting in the case of extremely limited well data. The latter seems, therefore, particularly adapted to exploration or early field development stages in which labeled data from wells are still very scarce.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have