Abstract

This paper investigates the seismic performance of existing reinforced concrete frames with wide beams mainly designed for gravity loads, as typically found in the seismic-prone Mediterranean area before the introduction of modern codes. The seismic capacity is evaluated in terms of the overall amount of input energy that the frame can dissipate/absorb up to collapse. This approach provides a quantitative evaluation that can be useful for selecting and designing an appropriate retrofit strategy. Six prototype frames representative of past construction practices in the southern part of Spain are designed, and the corresponding non-linear numerical models are developed and calibrated with purposely conducted tests on wide beamcolumn subassemblages. The models are subjected to sixteen earthquake records until collapse by applying the incremental dynamic analysis method. It is found that the ultimate energy dissipation capacity at the story level is markedly low (about 1.36 times the product of the lateral yield strength and yield displacement of the story), giving values for the maximum amount of energy that the frame can dissipate which are from one fourth to half of that required in moderate-seismicity regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call