Abstract

S-receiver functions along the Colorado Plateau-Rio Grande Rift-Great Plains Transect known as LA RISTRA in the southwestern United States have been utilized to map seismic discontinuities beneath this tectonically active region. Individual receiver functions were stacked according to ray piercing points with moveout corrections in order to improve the signal-to-noise ratio of the converted S-to-P phases. A mantle discontinuity, which is interpreted as the lithosphere-asthenosphere boundary (LAB), is observed along the profile with depth ranging from 80km beneath the Rio Grande Rift (RGR) to 100km beneath the Great Plains (GP) and 120–180km beneath the Colorado Plateau (CP). The shallow LAB beneath the Rio Grande Rift is indicative of lithosphere extension and asthenosphere upwarp. The LAB deepens sharply at the RGR-CP and RGR-GP boundaries, providing evidence for edge-driven, small-scale mantle convection beneath LA RISTRA. Two local discontinuities beneath the southeastern Colorado Plateau are imaged at ~250km and ~300km and could be the top and base of the eroded lithosphere, respectively. The S receiver function images suggest that edge-driven, small-scale convection is probably the mantle source for recent extension and uplift in the Rio Grande Rift and the Colorado Plateau.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call