Abstract

Study of the deep structure of the White Sea region is relevant to active geodynamics, manifestations of kimberlite magmatism, and the prospects of oil and gas searches. The aim of this work was to model the velocity and density structure of the earth’s crust in the White Sea region. Modelling was carried out using the known data of instrumental observations and the software complex “Integro”. With the help of 2D models based on deep seismic sounding (DSS) profiles and a digital map of the anomalous gravity field, the density structures of local areas of the region’s crust were refined. A 3D density model was built. Within the framework of this model, the positions of the density layers were determined. The relief of the Mohorovichich (Moho or M) discontinuity reflects the anomalies of the gravity field. Depression of the Moho boundary in the bottleneck of the White Sea indicates the vertical structure of the earth’s crust associated with manifestations of kimberlite magmatism.

Highlights

  • The subject of the current study is the White Sea basin and adjacent territories

  • Located at the junction of two large tectonic elements of the East European Craton, the Fennoscandian Shield and the Russian Plate, this region is constantly experiencing dynamic loads caused by the continuing uplift of the Fennoscandian Shield

  • Tectonics, and the evolution of the material composition of the lithosphere are relevant in the region

Read more

Summary

Introduction

The subject of the current study is the White Sea basin and adjacent territories. Located at the junction of two large tectonic elements of the East European Craton, the Fennoscandian Shield and the Russian Plate, this region is constantly experiencing dynamic loads caused by the continuing uplift of the Fennoscandian Shield. Its original crustal structures formed in the Archean were partially transformed in the processes of Proterozoic rifting and subsequent tectonomagmatic activation. Tectonics, and the evolution of the material composition of the lithosphere are relevant in the region. Its characteristic feature is the manifestation of kimberlite magmatism, and deposits of diamonds and other minerals. The formulation and solution of theoretical and applied problems are facilitated by the study of the deep structure of the region

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call