Abstract
Geological and geophysical studies recently conducted in the White Sea and the adjacent territory have provided new data on the deep structure of this region. Our study aims to conduct complex analysis of the anomalous magnetic field and the geological and geophysical data on the Onega-Kandalaksha paleorift located in the White Sea basin and the adjacent southeastern land area, and to develop a model showing its deep structure. The basis for analysing the magnetic field is the anomalous magnetic field (AMF) map constructed by the authors using the magnetic survey data consolidated by the Marine Arctic Geological Expedition (MAGE) in 2003–2008 and supplemented by the survey data of the Institute of Oceanology RAS in 2001–2004. The parameters of the magnetically active layer are estimated by the independent complementary methods of quantitative interpretation developed by the Laboratory of Geophysical Fields, P.P. Shirshov Institute of Oceanology RAS. This article describes a model showing the structure and formation of the magnetically active layer of the White Sea paleorift. Our study shows that the magnetically active layer of the paleorift system has a complex structure reflecting all the main stages in the evolution of tectonic activity in the White Sea region, from the Middle and Late Riphean to the last glaciation of the Quaternary period. The model includes three structural layers, each corresponding to a certain stage. The bottom structural layer is the base of the magnetically active layer, which reflects the continental rifting stage in the evolution of the White Sea mobile belt in the Middle and Late Riphean. The middle structural layer reflects the Middle Paleozoic (Late Devonian) stage of rifting reactivation, which is characterized by alkaline-ultrabasic magmatism and represented by swarms of alkaline dykes and diatremes, including kimberlite pipes. The top structural layer reflecting a high-frequency component of the AMF is related to the highly magnetic sources of anomalies located in the upper part of this structural layer. The characteristics of the top structural layer suggest that it formed in the Late Pleistocene – Holocene and developed during the final stage the tectonic activation of this region. The deep crustal structure of the White Sea basin is specified in our model showing the magnetically active layer for the low-frequency component of the AMF. In the southeastern part of the basin, magmatism products of the basic (Riphean – Vendian) and alkaline-ultrabasic (Middle Paleozoic) composition are abundant in the crust and provide for a strong magnetic source of anomalies, the lower edges of which are traced at the depths to 30 km. This probably reflects the most active plume-lithospheric interaction. Wedging and uplifting of the magnetically active layer northwestward along the Onega-Kandalaksha rift is related to the White Sea (Belomorsky) deep fault. This fault is a long-lived conduit that channels magma from the central portion of the plume, as evidenced by the igneous bodies of the basic composition in the basement and central parts of the sedimentary wedge in the Kandalaksha graben. The complex analysis of the AMF in the White Sea region suggests the presence of morphologically different igneous bodies in the upper crust in the study region.
Highlights
Our study aims to conduct complex analysis of the anomalous magnetic field and the geological and geophysical data on the Onega‐Kandalaksha paleorift located in the White Sea basin and the adjacent southeastern land area, and to develop a model showing its deep structure
The basis for ana‐ lysing the magnetic field is the anomalous magnetic field (AMF) map constructed by the authors using the magnetic survey data consolidated by the Marine Arctic Geological Expedition (MAGE) in 2003–2008 and supplemented by the survey data of the Institute of Oceanology RAS in 2001–2004
Our study shows that the magnetically active layer of the paleorift system has a complex structure reflecting all the main stages in the evolution of tectonic activity in the White Sea region, from the Middle and Late Riphean to the last glaciation of the Quaternary period
Summary
Изучение глубинного строения земной коры всегда являлось одной из важнейших задач в геологии, и, в частности, особый интерес вызывают те ее участки, которые претерпели деструкцию в ходе своей эволюции. Эти структуры объединяются в палео‐ рифтовую систему Белого моря, которая выделя‐ ется в рельефе кристаллического фундамента платформы системой рифтогенных желобов, рас‐ полагающихся субпараллельно вдоль северо‐вос‐ точного края платформы и погружающихся к юго‐ востоку под чехол Мезенской синеклизы. Северо‐ западная часть палеорифтовой системы местами раскалывает выходящий на поверхность крис‐ таллический фундамент платформы (Балтийский щит) и скрыта под водами Белого моря. Общая протяженность палеориф‐ товой системы Белого моря достигает более 1000 км при ширине от 300 до 500 км. В последние годы были выполнены значи‐ тельные объемы комплексных геофизических ис‐ следований (сейсмическое профилирование, со‐ провождаемое гравимагнитной съемкой) аква‐ торий Белого и южной части Баренцева моря (ОАО МАГЭ) и в наземной части европейского се‐ вера России в пределах Мезенской синеклизы (ПГО «Спецгеофизика»), а также полевые иссле‐ дования на территории северо‐восточной части Балтийского щита и юго‐восточного Беломорья. Благодаря этим исследованиям появилась воз‐ можность более детального изучения глубинного строения территории Беломорья, однако решение этой задачи пока имеет неоднозначную трактовку в силу ряда как объективных, так и субъективных причин, отражающих различные взгляды иссле‐ дователей
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.