Abstract

ABSTRACTConsiderable progress has been made on the research of non-rectangular reinforced concrete (RC) squat walls over the past decades. However, the experimental data of L-shaped RC squat walls remain limited, especially for their seismic behaviors under non-principal bending actions. This paper presents an experimental and numerical investigation on L-shaped RC squat structural walls with an emphasis on how varying the directions of lateral cyclic loading influences the seismic responses of these walls. Four L-shaped specimens are tested under lateral cyclic displacements and low levels of axial compression The variables are axial loads and lateral loading directions. The performance of specimens is discussed in terms of cracking patterns, failure mechanisms, hysteretic responses, deformation components and strain profiles. Furthermore, three-dimensional finite element models are developed to supplement the experimental results. The direction of lateral loading is found to have a significant effect on the peak shear strength of L-shaped RC squat walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.