Abstract

The response of GRS bridge abutments to earthquake loading remains a concern despite their great success under static loads. In order to advance and implement this new technology, especially in seismically active regions, the study described in this paper and the companion paper was undertaken to examine the performance of GRS bridge abutments under seismic loads in a rational and critical manner. In this study, a field-scale shake table test was performed in order to provide relevant test results to validate an analytical procedure for GRS abutments that was used subsequently to perform a rigorous parametric analysis that formed the basis for the proposed guidelines for design and construction of earthquake-resistant GRS abutments. This paper describes the validation of a finite element model where its analytical results were compared with the results of the instrumented GRS bridge abutment shake table test described in the companion paper titled: “Seismic behavior of geosynthetic-reinforced soil (GRS) bridge abutments with modular-block facing—an experimental study.” After validation is achieved, the finite element modeling was used to perform rigorous parametric analyses on a bridge with GRS abutments subjected to various types of earthquake loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call