Abstract

Reinforced concrete core walls with good anti-side rigidity and spatial rigidity is used widely in high-rise buildings. Elasto-plastic static analysis of core walls are be realized by the program CANNY based on the theory of fiber model. Compared with the tests, Results from the simulation anlysis match well with those from the tests. The influence of axial compression ratio and height-width ratio on the bearing capacity and deformation of core walls are analyzed systemically. It is shown that the fiber model is available and successful for the numerical simulation of core walls. The axial compression ratio has distinct affect on the elastic and inelastic behavior of RC core walls. The ratio of height to width not only has effect on the bearing capacity and deformation performance, but also changes the failure mode of RC core walls. The numerical results confirmed the accuracy of this analysis procedure in representing the nonlinear behavior of core walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.