Abstract

The seismic bearing capacity factors for shallow strip footings embedded in sloping ground with general c-ϕ soil are found out by using the limit equilibrium method. The seismic forces are considered as pseudostatic forces acting both on the footing and on the soil below the footing. A composite failure surface involving planar and logspiral is considered in the analysis. A new methodology to establish minimum bearing capacity factors has been adopted by numerical iteration technique to determine the critical focus of the logspiral. Three different types of failure surfaces are considered depending on the embedment depth and ground inclinations. The seismic bearing capacity factors with respect to cohesion, surcharge and unit weight components viz. Ncd , Nqd , and Nγd , respectively, are found out separately for various values of soil friction angles and seismic acceleration coefficients both in the horizontal and vertical directions, ground inclinations, and embedment depths. Results of the present study...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.