Abstract
By end of October 2020, the COVID-19 pandemic has taken a tragic toll of 1150 000 lives and this number is expected to increase. Despite the pandemic is raging in most parts of the world, in a few countries COVID-19 epidemics subsided due to successful implementations of intervention measures. A unifying perspective of the beginnings, middle stages, and endings of such completed COVID-19 epidemics is developed based on the order parameter and eigenvalue concepts of nonlinear physics, in general, and synergetics, in particular. To this end, a standard susceptible-exposed-infected-recovered (SEIR) epidemiological model is used. It is shown that COVID-19 epidemic outbreaks follow a suitably defined SEIR order parameter. Intervention measures switch the eigenvalue of the order parameter from a positive to a negative value, and in doing so, stabilize the COVID-19 disease-free state. The subsiding of COVID-19 epidemics eventually follows the remnant of the order parameter of the infection dynamical system. These considerations are illustrated for the COVID-19 epidemic in Thailand from January to May 2020. The decay of effective contact rates throughout the three epidemic stages is demonstrated. Evidence for the sign-switching of the dominant eigenvalue is given and the order parameter and its stage-3 remnant are identified. The presumed impacts of interventions measures implemented in Thailand are discussed in this context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.