Abstract
Naive Bayes (NB) has been popularly applied in many classification tasks. However, in real-world applications, the pronounced advantage of NB is often challenged by insufficient training samples. Specifically, the high variance may occur with respect to the limited number of training samples. The estimated class distribution of a NB classier is inaccurate if the number of training instances is small. To handle this issue, in this paper, we proposed a SEIR (Susceptible, Exposed, Infectious and Recovered) immune-strategy-based instance weighting algorithm for naive Bayes classification, namely SWNB. The immune instance weighting allows the SWNB algorithm adjust itself to the data without explicit specification of functional or distributional forms of the underlying model. Experiments and comparisons on 20 benchmark datasets demonstrated that the proposed SWNB algorithm outperformed existing state-of-the-art instance weighted NB algorithm and other related computational intelligence methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.