Abstract

Over the past few years, we have made great progress in image categorization based on convolutional neural networks (CNNs). These CNNs are always trained based on a large-scale image data set; however, people may only have limited training samples for training CNN in the real-world applications. To solve this problem, one intuition is augmenting training samples. In this article, we propose an algorithm called Lavagan ( La tent V ariables A ugmentation Method based on G enerative A dversarial N ets) to improve the performance of CNN with insufficient training samples. The proposed Lavagan method is mainly composed of two tasks. The first task is that we augment a number latent variables (LVs) from a set of adaptive and constrained LVs distributions. In the second task, we take the augmented LVs into the training procedure of the image classifier. By taking these two tasks into account, we propose a uniform objective function to incorporate the two tasks into the learning. We then put forward an alternative two-play minimization game to minimize this uniform loss function such that we can obtain the predictive classifier. Moreover, based on Hoeffding’s Inequality and Chernoff Bounding method, we analyze the feasibility and efficiency of the proposed Lavagan method, which manifests that the LV augmentation method is able to improve the performance of Lavagan with insufficient training samples. Finally, the experiment has shown that the proposed Lavagan method is able to deliver more accurate performance than the existing state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.