Abstract
In the ordinary normal surface for a compact 3-manifold, any incompressible, ∂-incompressible, compact surface can be moved by an isotopy to a normal surface [9]. But in a non-compact 3-manifold with an ideal triangulation, the existence of a normal surface representing an incompressible surface cannot be guaranteed. The figure-8 knot complement is presented in a counterexample in [12]. In this paper, we show the existence of normal Seifert surface under some restriction for a given ideal triangulation of the knot complement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.