Abstract
Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time. The SIT model asserts that memories initially adopt a highly modular or segregated network structure, functioning as an optimal storage buffer by balancing protection from disruptions and accommodating substantial information. Over time, a repeated combination of neural network reactivations involving activation spreading and synaptic plasticity transforms the initial modular structure into an integrated memory form, facilitating intercommunity spreading and fostering generalization. The SIT model identifies a nonlinear or inverted U-shaped function in memory evolution where memories are most susceptible to changing their representation. This time window, located early during the transformation, is a consequence of the memory's structural configuration, where the activation diffusion across the network is maximized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have