Abstract

We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca$_{1-x}$La$_{x}$Fe$_{2}$As$_{2}$. Using electrical transport, elastic neutron scattering and resonant tunnel diode oscillator measurements on samples under both quasi-hydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) quantum critical point. Our results indicate that the observed superconducting phase with maximum transition temperature of $T_{c}$=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure tuning through the AFM critical point. In contrast to all other intermetallic iron-pnictide superconductors with the ThCr$_2$Si$_2$ structure, this superconducting phase appears to exist only exclusively from the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. The unusual dichotomy between lower-$T_{c}$ systems with coexistent superconductivity and magnetism and the tendency for the highest-$T_{c}$ systems to show non-coexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.