Abstract

Hydrogen (H)-doped LaFeAsO is a prototypical iron-based superconductor. However, its phase diagram extends beyond the standard framework, where a superconducting (SC) phase follows an antiferromagnetic (AF) phase upon carrier doping; instead, the SC phase is sandwiched between two AF phases appearing in lightly and heavily H-doped regimes. We performed nuclear magnetic resonance (NMR) measurements under pressure, focusing on the second AF phase in the heavily H-doped regime. The second AF phase is strongly suppressed when a pressure of 3.0 GPa is applied, and apparently shifts to a highly H-doped regime, thereby a "bare" quantum critical point (QCP) emerges. A quantum critical regime emerges in a paramagnetic state near the QCP, however, the influence of the AF critical fluctuations to the SC phase is limited in the narrow doping regime near the QCP. The optimal SC condition ($T_c \sim$ 48 K) is unaffected by AF fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call