Abstract

The investigation of initial stage of Si1 – xGex alloy deposition and clarification of Ge nanocrystal formation mechanism has been carried out. It was found that at the initial stages of growing layers of Si1 – xGex alloys, the density of island nuclei Si1 – xGex increases by a factor of 2.5–3.4 compared to the density of polycrystalline silicon islands (from 1.07 ⋅ 1011 to 1.90 ⋅ 1011 cm–2 and from 3.1 ⋅ 1010 to 4.3 ⋅ 1010 cm–2 respectively). A decrease in the thickness of the layer corresponding to the end of the induction period and the formation of a continuous Si1 – xGex layer to 8–10 nm (for polycrystalline silicon, the thickness of a similar layer is approximately 22 nm) has been established. It is shown that the Ge nanocrystal formation is occurred by segregationist pushback of Ge atoms by the SiO2 /Si1 – xGex oxidation front and oxidation through grain boundaries during oxidation of Si1 – xGex thin layers, produced by chemical vapor deposition. The MOS structure with array of Ge nanocrystal, which has the hysteresis capacitance characteristics of 1.7–1.8 V and leakage current density from 1.5 ⋅ 10–16 to 2.2 ⋅ 10–16 A/µm2 was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.