Abstract

The segregation during solidification and high temperature diffusion during homogenization of niobium in a highly alloyed nickel-base superalloy were investigated. Niobium is seriously segregated into the interdendritic regions with segregation coefficient as high as 4.30. Various niobium-enriched phases including Laves phase, δ phase, (γ+γ′) eutectic, MC and M 6C types of carbides precipitated in the interdendritic regions. The soluble temperature of niobium-enriched phases and the degree of dendritic segregation were determined by differential thermal analysis and homogenization treatments at varied temperatures and times. The calculation of elemental diffusion indicates that the diffusion rate of niobium increases remarkably with the homogenization temperature increasing, so that the annealing time can be effectively reduced. A three-step homogenization treatment technology without incipient melting was established to eliminate the segregation of niobium and to obtain a uniform microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.