Abstract

We present a fast, noise-efficient, and accurate estimator for material separation using photon-counting x-ray detectors (PCXDs) with multiple energy bin capability. The proposed targeted least squares estimator (TLSE) is an improvement of a previously described A-table method by incorporating dynamic weighting that allows the variance to be closer to the Cramér-Rao lower bound (CRLB) throughout the operating range. We explore Cartesian and average-energy segmentation of the basis material space for TLSE and show that, compared with Cartesian segmentation, the average-energy method requires fewer segments to achieve similar performance. We compare the average-energy TLSE to other proposed estimators-including the gold standard maximum likelihood estimator (MLE) and the A-table-in terms of variance, bias, and computational efficiency. The variance and bias were simulated in the range of 0 to 6cm of aluminum and 0 to 50cm of water with Monte Carlo methods. The Average-energy TLSE achieves an average variance within 2% of the CRLB and mean absolute error of [Formula: see text]. Using the same protocol, the MLE showed variance within 1.9% of the CRLB ratio and average absolute error of [Formula: see text] but was 50 times slower in our implementations. Compared with the A-table method, TLSE gives a more homogenously optimal variance-to-CRLB ratio in the operating region. We show that variance in basis material estimates for TLSE is lower than that of the A-table method by as much as [Formula: see text] in the peripheral region of operating range (thin or thick objects). The TLSE is a computationally efficient and fast method for material separation with PCXDs, with accuracy and precision comparable to the MLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.