Abstract

We present a fast, noise-efficient, and accurate estimator for material separation using photon-counting x-ray detectors (PCXDs) with multiple energy bin capability. The proposed targeted least squares estimator (TLSE) improves a previously proposed A-Table method by incorporating dynamic weighting that allows noise to be closer to the Cramer- Rao Lower Bound (CRLB) throughout the operating range. We explore Cartesian and average-energy segmentation of the basis material space for TLSE, and show that iso-average-energy contours require fewer segments compared to Cartesian segmentation to achieve similar performance. We compare the iso-average-energy TLSE to other proposed estimators - including the gold standard maximum likelihood estimator (MLE) and the A-Table1 - in terms of variance, bias and computational efficiency. The variance and bias of this estimator between 0 to 6 cm of aluminum and 0 to 50 cm of water is simulated with Monte Carlo methods. Iso-average energy TLSE achieves an average variance within 2% of CRLB, and mean of absolute error of (3.68 ± 0.06) x 10-6 cm. Using the same protocol, MLE showed variance-to- CRLB ratio and average bias of 1.0186 ± 0.0002 and (3.10 ± 0.06) x 10-6 cm, respectively, but was 50 times slower in our simulation. Compared to the A-Table method, TLSE gives a more homogenous variance-to-CRLB profile in the operating region. We show that variance-to-CRLB for TLSE is lower by as much as ~36% than A-Table method in the peripheral region of operation (thin or thick objects). The TLSE is a computationally efficient and fast method for implementing material separation technique in PCXDs, with performance parameters comparable to the MLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.