Abstract
Random numbers are widely used in various applications. In the majority of cases, a pseudo-random number generator is used since true random number generators are slow and they are barely suitable for the hardware implementation. In this paper, we present new architecture of URNG (uniform random number generator) employing Leap-Ahead LFSR architecture for hardware implementation. In particular, the proposed URNG consists of two more segmented Leap-Ahead LFSRs to overcome the drawback of the conventional URNG employing Leap-Ahead architecture, that is, the sharp decrease of a maximum period of the generated random numbers. Thus, the proposed URNG with segmented LFSR architecture can generate multiple bits random number in a cycle without the frequent diminishing of maximum period of the generated random numbers. We prove the efficiency of the proposed segmented LFSR-architecture through the mathematical analysis. The simulation results show that the proposed URNG employing segmented Leap-Ahead LFSR architecture can be increased 2.5 times of the maximum period of generated random numbers compared to the URNG using the conventional Leap-Ahead architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Engineering and Its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.