Abstract
This paper proposes an analytical framework that combines dimension reduction and data mining techniques to obtain a sample segmentation according to potential fraud probability. In this regard, the purpose of this study is twofold. Firstly, it attempts to determine tax benefits that are more likely to be used by potential fraud taxpayers by means of investigating the Personal Income Tax structure. Secondly, it aims at characterizing through socioeconomic variables the segment profiles of potential fraud taxpayer to offer an audit selection strategy for improving tax compliance and improve tax design. An application to the annual Spanish Personal Income Tax sample designed by the Institute for Fiscal Studies is provided. Results obtained confirm that the combination of data mining techniques proposed offers valuable information to contribute to the study of tax fraud.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.