Abstract
Coronary heart disease is a disease with the highest mortality rates in the world. This makes the development of the diagnostic system as a very interesting topic in the field of biomedical informatics, aiming to detect whether a heart is normal or not. In the literature there are diagnostic system models by combining dimension reduction and data mining techniques. Unfortunately, there are no review papers that discuss and analyze the themes to date. This study reviews articles within the period 2009-2016, with a focus on dimension reduction methods and data mining techniques, validated using a dataset of UCI repository. Methods of dimension reduction use feature selection and feature extraction techniques, while data mining techniques include classification, prediction, clustering, and association rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.