Abstract
PurposeMagnetic resonance imaging (MRI) has a special place in the evaluation of orbital and periorbital lesions. Segmentation is one of the deep learning methods. In this study, we aimed to perform segmentation in orbital and periorbital lesions.Material and methodsContrast-enhanced orbital MRIs performed between 2010 and 2019 were retrospectively screened, and 302 cross-sections of contrast-enhanced, fat-suppressed, T1-weighted, axial MRI images of 95 patients obtained using 3 T and 1.5 T devices were included in the study. The dataset was divided into 3: training, test, and validation. The number of training and validation data was increased 4 times by applying data augmentation (horizontal, vertical, and both). Pytorch UNet was used for training, with 100 epochs. The intersection over union (IOU) statistic (the Jaccard index) was selected as 50%, and the results were calculated.ResultsThe 77th epoch model provided the best results: true positives, 23; false positives, 4; and false negatives, 8. The pre-cision, sensitivity, and F1 score were determined as 0.85, 0.74, and 0.79, respectively.ConclusionsOur study proved to be successful in segmentation by deep learning method. It is one of the pioneering studies on this subject and will shed light on further segmentation studies to be performed in orbital MR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.