Abstract
Modern multislice computed tomography (CT) scanners produce isotropic CT images with a thickness of 0.6 mm. These CT images offer detailed information of lung cavities, which could be used for better surgical planning of treating lung cancer. The major challenge for developing a surgical planning system is the automatic segmentation of lung lobes by identifying the lobar fissures. This paper presents a lobe segmentation algorithm that uses a two-stage approach: 1) adaptive fissure sweeping to find fissure regions and 2) wavelet transform to identify the fissure locations and curvatures within these regions. Tested on isotropic CT image stacks from nine anonymous patients with pathological lungs, the algorithm yielded an accuracy of 76.7%-94.8% with strict evaluation criteria. In comparison, surgeons obtain an accuracy of 80% for localizing the fissure regions in clinical CT images with a thickness of 2.5-7.0 mm. As well, this paper describes a procedure for visualizing lung lobes in three dimensions using software--amira--and the segmentation algorithm. The procedure, including the segmentation, needed about 5 min for each patient. These results provide promising potential for developing an automatic algorithm to segment lung lobes for surgical planning of treating lung cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.