Abstract

In this paper, the segmentation of cotton leaves from the complex background has been carried out using deformable model. In order to segment, a database of about 300 cotton leaves image was developed. The collected images were resized to 256x256 size. The resized image has been segmented using Adaptive Diffusion Flow (ADF) model. The ADF model has been obtained by replacing the smoothening energy term of gradient vector flow model with active hyper surface harmonic minimal function used to keep away from weak edges leakage. The infinite Laplace function is used to move the deformable model into narrow concave regions. Further, the developed model has been compared with the gradient vector flow and vector field convolution segmentation methods in terms of number of iterations, time taken for segmentation and various performance parameters namely precision, recall, Manhattan, Jaccard, Dice. From the results, it is concluded that the adaptive diffusion flow method is faster and performance parameters are better than the Gradient Vector Flow (GVF) and Vector Field Convolution (VFC) methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.