Abstract

BackgroundAbdominal organs segmentation of magnetic resonance (MR) images is an important but challenging task in medical image processing. Especially for abdominal tissues or organs, such as liver and kidney, MR imaging is a very difficult task due to the fact that MR images are affected by intensity inhomogeneity, weak boundary, noise and the presence of similar objects close to each other.MethodIn this study, a novel method for tissue or organ segmentation in abdomen MR imaging is proposed; this method combines kernel graph cuts (KGC) with shape priors. First, the region growing algorithm and morphology operations are used to obtain the initial contour. Second, shape priors are obtained by training the shape templates, which were collected from different human subjects with kernel principle component analysis (KPCA) after the registration between all the shape templates and the initial contour. Finally, a new model is constructed by integrating the shape priors into the kernel graph cuts energy function. The entire process aims to obtain an accurate image segmentation.ResultsThe proposed segmentation method has been applied to abdominal organs MR images. The results showed that a satisfying segmentation without boundary leakage and segmentation incorrect can be obtained also in presence of similar tissues. Quantitative experiments were conducted for comparing the proposed segmentation with other three methods: DRLSE, initial erosion contour and KGC without shape priors. The comparison is based on two quantitative performance measurements: the probabilistic rand index (PRI) and the variation of information (VoI). The proposed method has the highest PRI value (0.9912, 0.9983 and 0.9980 for liver, right kidney and left kidney respectively) and the lowest VoI values (1.6193, 0.3205 and 0.3217 for liver, right kidney and left kidney respectively).ConclusionThe proposed method can overcome boundary leakage. Moreover it can segment liver and kidneys in abdominal MR images without segmentation errors due to the presence of similar tissues. The shape priors based on KPCA was integrated into fully automatic graph cuts algorithm (KGC) to make the segmentation algorithm become more robust and accurate. Furthermore, if a shelter is placed onto the target boundary, the proposed method can still obtain satisfying segmentation results.

Highlights

  • The recent development of open magnetic resonance imaging has provided new opportunities for generation image-guided surgical and interventional applications

  • The proposed segmentation method has been applied to abdominal organs magnetic resonance (MR) images

  • The comparison is based on two quantitative performance measurements: the probabilistic rand index (PRI) and the variation of information (VoI)

Read more

Summary

Introduction

The recent development of open magnetic resonance imaging has provided new opportunities for generation image-guided surgical and interventional applications. During surgical planning and surgical navigation based on MR images, there are two problems have to be faced: the shape deformation of the organs and the similarity among abdominal organs For these reasons, an effective and robust algorithm for abdominal organs segmentation is helpful and very important in image-guided surgery and surgical navigation system [2,3]. Because of its weak boundary, intensity inhomogeneity and noise, the segmentation of MR images is considered a complex procedure [4]. For this reason, developing different advanced and intelligent algorithms for MR image segmentation has become a research hotspot over the last few years. For abdominal tissues or organs, such as liver and kidney, MR imaging is a very difficult task due to the fact that MR images are affected by intensity inhomogeneity, weak boundary, noise and the presence of similar objects close to each other

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.