Abstract

Reaction of the readily reduced pincer ligand bis-tetrazinylpyridine, btzp, with the zerovalent metal source M(CO)3(MeCN)3 yields M(btzp)2 for M = Cr, Mo. These diamagnetic molecules show intrapincer bond lengths consistent with major charge transfer from metal to ligand, a result which is further supported by X-ray photoelectron spectroscopy. These molecules show up to five reversible outer-sphere electron transfers by cyclic voltammetry. The electronic structure of neutral M(btzp)2 is analyzed by DFT and CASSCF calculations, which reveal the degree of back-donation from the metal into pincer π* orbitals and also subtle differences in metal-ligand interaction for Mo vs Cr. Near-IR absorptions exhibited by both M(btzp)2 species originate from charge transfer among differently reduced tetrazine rings, which thus further support pincer reduction in these species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.