Abstract
Abstract The development of a seedling into an adult plant comprises various underground processes. Time-lapse photography (TLP) makes them visible. This is documented for Potentilla inclinata (Rosaceae) and Inula ensifolia (Asteraceae). After germination, P. inclinata develops a taproot system. Contraction phenomena pull the basal part of the shoot at least 10 mm into the soil. Later, several adventitious roots are generated, and thus the root system changes to a fibrous one. This is followed by cloning without separation of the ramets. Seedlings of I. ensifolia develop a weak primary root. At an early stage, adventitious roots are formed at the leaf rosette. This fibrous root system exerts a strong pulling effect on the shoot. After one vegetation period the basis of the rosette is approx. 30 mm under the soil surface. Cloning includes the formation of many new horizontal shoots, which conquer new sites. These two examples show three functional steps common in the developmental progress of subterranean systems: (I) establishment of the seedling, (II) innovation and survival of the young plant, and (III) reiteration (cloning and dispersal). However, to accomplish these basic development steps the diversity of subterranean systems is enhanced by different organographical components. Furthermore, the development of subterranean systems is a dynamic process consisting of two kinetic processes: the vertical movement during seedling establishment, which brings the innovation buds to a safe soil position, and the horizontal movement during dispersal, which conquers new sites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have