Abstract

Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield potential that could be valuable genetic material for breeding programs. Additionally, the potential genetic erosion in genebanks was assessed. Regarding bean commercial traits, under low temperature at sowing time seed reached larger size, and crop yield was higher compared to warmer temperatures at the sowing time. Therefore, early sowing of bean is strongly recommended.

Highlights

  • The common bean (Phaseolus vulgaris L.) is native to the Americas where two major domestication centers and gene pools have been described, Andean and Mesoamerican, which differ in their adaptation to different climatic and eco-geographic conditions

  • Seedling emergence was delayed under the lower temperature in controlled conditions averaging 27.2 d at 14/8◦C, but emergence time was drastically reduced to 7.8 and 4.6 d when temperature was increased to 17/12◦C and 22/15◦C, respectively

  • In controlled environments and field conditions, studies have shown that the rate of germination and seedling emergence linearly increases with temperature in several crop species including legumes, such as cowpea, soybean, chickpea, and peanut (Covell et al, 1986; Ellis et al, 1986; Mohamed et al, 1988; Craufurd et al, 1996; Awal and Ikeda, 2002)

Read more

Summary

Introduction

The common bean (Phaseolus vulgaris L.) is native to the Americas where two major domestication centers and gene pools have been described, Andean and Mesoamerican, which differ in their adaptation to different climatic and eco-geographic conditions. In Europe, this issue is highly relevant for breeding programs. Their hybridization has led to the recombination of the Mesoamerican and Andean traits resulting in novel and useful genotypes and phenotypes adapted to contrasting environmental conditions (i.e., resistance to biotic and abiotic stress; Rodiño et al, 2006; Angioi et al, 2010; Blair et al, 2010; Santalla et al, 2010). Various studies suggest that in other regions the introgression between these gene pools appears to be less relevant than in Europe (De Ron et al, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call