Abstract

Low temperature (LT) tolerance in cereals needs developmental regulation of metabolites, a process which is associated with vernalization requirement. This study was initiated to investigate the relationships among stage of phenological development, final leaf number (FLN), the activities superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and polyphenol oxidase, the contents of proline, photosynthetic pigments, and hydrogen peroxide (H2O2) during vernalization and LT acclimation in spring and winter wheat. Six genotypes with different vernalization requirements were grown under greenhouse and field conditions. The spring-habit parent, “Pishtaz” and line 4021, rapidly entered the reproductive phase and had a limited capacities to LT acclimate. They also had the lowest antioxidative activities and accumulation of proline among genotypes. Lines 4002 and 4014, with a short vernalization requirement and higher FLN, remained in the early stages of phenological development longer and developed a higher level of LT tolerance and metabolites compared to spring habit genotypes. In contrast, the winter habit “Norstar” and line 4023 spent a longer time in the vegetative stage and accumulated higher levels of metabolites. Maximum LT tolerance and metabolite accumulations occurred near the vegetative/reproductive transition in all genotypes. The longer periods of vernalization and increased FLN that happened along with increased defense mechanisms and decreased damage indices (H2O2 content and LT50) ensured LT tolerance in wheat. These results demonstrate that both genetic and environmental factors via developmental regulation of metabolites play important roles in creating LT tolerance in long mild winters of Iran. Significant correlations coefficients for many of the metabolites considered in this study and Lethal temperature 50 (LT50) also suggest that they could be useful as indirect measures of plant LT tolerance potential in wheat breeding programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.