Abstract

Abstract Numerical experiments were conducted to evaluate the role of hygroscopic flare seeding on enhancement of precipitation in convective clouds. The spectra of seeding particles were based on measurements of the particles produced by hygroscopic flares used in field experiments in South Africa. The seeding effects were investigated by comparing the development of precipitation particles and rain production between the seeded and unseeded cases for clouds with different cloud condensation nuclei (CCN) concentrations and spectra. The South African hypothesis that the introduction of larger and more efficient artificial CCN below cloud base at the early stage of cloud development would influence the initial condensation process in the cloud, resulting in a broader droplet spectrum and in acceleration of the precipitation growth by coalescence, was tested. The results show that the largest seeding particles broaden the cloud droplet distribution near cloud base, leading to an earlier formation of raindro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.