Abstract

Seed-mediated growth of fluorescent CdSe quantum dots (QDs) around γ-Fe 2O 3 magnetic cores was performed at high temperature (300 °C) in the presence of organic surfactants. Bi-functional magnetic quantum dots (MQDs) with tunable emission properties were successfully prepared. The as-synthesized MQDs were characterized by high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS), which confirmed the assembly of heterodimers. When a longer growth period was employed, a homogeneous dispersion of QDs around a magnetic nanoparticle was obtained. The magnetic properties of these nanocomposites were examined. The MQDs were superparamagnetic with a saturation magnetization of 0.40 emu/g and a coercivity of 138 Oe at 5 K. To demonstrate their potential application in bio-labeling, these MQDs were coated with a thin silica shell, and functionalized with a polyethylene glycol (PEG) derivative. The functionalized MQDs were effectively used for the labeling of live cell membranes of 4T1 mouse breast cancer cells and HepG2 human liver cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.