Abstract
Biofumigation is practiced to control soilborne pests and weeds in agronomic fields. The objectives of this research were to assess the dose response of weed seeds to Indian mustard biofumigation and associate responses to seed dormancy state, initial dormancy, and seed parameters. A petri dish biofumigation methodology was developed to expose seeds of common lambsquarters, bird vetch, wild carrot, common ragweed, green foxtail, velvetleaf, hairy galinsoga, and red clover to allelochemicals produced after rehydrating 0 (control), 1.94, 2.90, 5.81, 11.61, and 17.41 mg cm−2of dried mustard powder. Weed species expressed specific dose responses, estimated ED50, LD50, and maximal mortality. Hairy galinsoga and wild carrot were consistently the most affected by biofumigation, with maximal mortality reaching 97% and 95%, ED50values for germination were 1.91 and 2.68 mg cm−2, and LD50values were 3.31 and 3.69 mg cm−2of dried mustard tissue, respectively. Initial dormancy was assessed by germination and tetrazolium tests. Seed parameters such as testa thickness, relative weight of the testa, and seed size were measured directly by manual dissection, weighing seed structures, and stereomicroscopic imaging software measurements. Linear regression analyses revealed initial dormancy to be positively related to ED50and LD50values with a significant interaction with seed surface and seed width, respectively. Exposure to 5.81 mg cm−2of dried mustard powder increased common ragweed seed mortality for after-ripened seeds by 293% and by 58% for primary dormant seeds compared with untreated seeds. Mortality of common lambsquarters secondary and primary dormant seeds increased by 730% and 106%, respectively, and for wild carrot by 1,193 and 156%, respectively. Results underline the potential to incorporate biofumigation into weed management programs for repression of susceptible weed species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.