Abstract

The study of molecular wires facilitating long-range charge transport is of fundamental interest for the development of various technologies in (bio)organic and molecular electronics. Defining the nature of long-range charge transport is challenging as electrical characterization does not offer the ability to distinguish a tunneling mechanism from the other. Here, we show that investigation of the Seebeck effect provides the ability. We examine the length dependence of the Seebeck coefficient in electrografted bis-terpyridine Ru(II) complex films. The Seebeck coefficient ranges from 307 to 1027 μV/K, with an increasing rate of 95.7 μV/(K nm) as the film thickness increases to 10 nm. Quantum-chemical calculations unveil that the nearly overlapped molecular-orbital energy level of the Ru complex with the Fermi level accounts for the giant thermopower. Landauer-Büttiker probe simulations indicate that the significant length dependence evinces the Seebeck effect dominated by coherent near-resonant tunneling rather than thermal hopping. This study enhances our comprehension of long-range charge transport, paving the way for efficient electronic and thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call