Abstract

This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call