Abstract

Brine pools in deep-sea environments provide unique perspectives into planetary and geological processes, extremophile microbial communities, and sedimentary records. The NEOM Brine Pool Complex was the first deep-sea brine pool system found in the Gulf of Aqaba, representing a significant extension of the geographical range and depositional setting of Red Sea brine pools. Here, we use a combination of brine pool samples collected via cast using a conductivity, temperature, depth instrument (CTD), as well as interstitial porewaters extracted from a sediment core collected in the NEOM Brine Pool to characterize the chemical composition and subsurface evolution of the brine. New results indicate that the NEOM brines and the subsurface porewaters may originate from different sources. Elemental concentrations suggest the brines in the NEOM pool are likely derived from dissolution of sub-seabed evaporites. In contrast, the sedimentary porewaters appear to have been influenced by periodic turbidite flows, generated either by earthquakes, submarine landslides, or flash floods, in which normal marine waters from the overlying Red Sea became entrained, periodically disturbing the chemistry of the brine pool. Thus, sediment porewaters beneath brine pools may record transient and dynamic changes in these deep marine depositional environments, reflecting the interplay between climate, tectonics, and sedimentation patterns along a rapidly urbanizing coastline. In concert, new results from NEOM extend the range and chemical constraints on Red Sea Brine Pools and highlight the dynamic interplay between Red Sea Deep water, dissolving evaporites, turbidites, and subsurface fluids that produce these unique depositional environments which host microbial life at the edge of habitability. In concert with sedimentological indicators, the chemistry of porewaters beneath deep-sea brine pools may present detailed records of natural hazards arising from interactions between the atmosphere, lithosphere, hydrosphere, and anthroposphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call