Abstract
The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production. Upon producing gas from a hydrate reservoir via depressurization, the permeability of sediments changes in two ways with hydrate dissociation, increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization. In order to study the evolution of sediment permeability during the production process with the depressurization method, an improved pore network model (PNM) method is developed to establish the permeability change model. In this model, permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating. The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change. Within a reasonable degree of pore compression in field trial, the effect of pore space release on the reservoir permeability is greater than that of pore compression. The permeability of hydrate containing sediments keeps increasing in the course of gas production, no matter with what hydrate occurrence in sediment pore.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have