Abstract

Autonomous vehicles capable of navigating unpredictable real-world environments with little human feedback are a reality today. Such systems rely heavily on onboard sensors such as cameras, radar/LIDAR, and GPS as well as capabilities such as 3G/4G connectivity and V2V/V2I communication to make real-time maneuvering decisions. Autonomous vehicle control imposes very strict requirements on the security of the communication channels used by the vehicle to exchange information as well as the control logic that performs complex driving tasks such as adapting vehicle velocity or changing lanes. This study presents a first look at the effects of security attacks on the communication channel as well as sensor tampering of a connected vehicle stream equipped to achieve CACC. Our simulation results show that an insider attack can cause significant instability in the CACC vehicle stream. We also illustrate how different countermeasures, such as downgrading to ACC mode, could potentially be used to improve the security and safety of the connected vehicle streams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.