Abstract

Unlike in operational databases, aggregation and derivation play a major role in on-line analytical processing (OLAP) systems and data warehouses. Unfortunately, the process of aggregation and derivation can also pose challenging security problems. Aggregated and derived data usually look innocent to traditional security mechanisms, such as access control, and yet such data may carry enough sensitive information to cause security breaches. This chapter ?rst demonstrates the security threat from aggregated and derived data in OLAP systems and warehouses. The chapter then reviews a series of methods for removing such a threat. Two efforts in extending existing inference control methods to the special setting of OLAP systems and warehouses are discussed. Both methods are not fully satisfactory due to limitations inherited from their counter parts in statistical databases. The chapter then reviews another solution based on a novel preventing-then-removing approach, which shows a promising direction towards securing OLAP systems and data warehouses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.