Abstract

This paper delves into the crucial challenge of safeguarding data sensitivity and preventing security breaches, which can result in substantial losses, including significant financial costs and potential loss of lives. Notably, the United States faces the highest financial burden, with data breaches costing approximately USD 5.09 million. With the proliferation of Internet of Things (IoT) devices, enormous volumes of data are collected from diverse sources. However, the inherent limitations in computational power and memory of IoT devices render them susceptible targets for malicious attacks. This study focuses on fortifying the security of multimedia data, encompassing audio, video, and images, obtained from IoT devices. Cutting-edge technologies such as blockchain and quantum cryptography are explored as promising avenues to bolster multimedia security and preserve privacy. Quantum Key Distribution (QKD) emerges as an alternative to classical encryption and key distribution methods, offering heightened data security. Simultaneously, blockchain leverages hash functions to augment the overall security posture. By harnessing the principles of quantum mechanics, QKD facilitates secure key exchange between involved parties for data encryption and decryption. Additionally, the paper introduces innovative methodologies to enhance the security, privacy, and anonymity of IoT devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.