Abstract

Recently, there has been a significant increase in the use of collaborative environments for managing and sharing information. However, these environments often present significant security risks due to the potential for unauthorized access, data leakage, and other security breaches. To address these risks, machine learning (ML) techniques have been increasingly used to secure information management in collaborative environments. We propose a novel ML approach to be applied to detect and prevent security threats in collaborative environments. Our approach integrates temporal convolution to detect and prevent security threats by analyzing spatial-temporal patterns in data from various sources, such as network traffic, system logs, and user behavior. Furthermore, we present a case study demonstrating the effectiveness of our model in securing collaborative information management. The case study involves the development of our system for detecting insider threats in a collaborative environment. Extensive experimentation on this case study demonstrates the efficiency and effectiveness of the proposed system for securing information management and promoting further developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.