Abstract

In this paper, the K-user interference channel with secrecy constraints is considered with delayed channel state information at transmitters (CSIT). We propose a novel secure retrospective interference alignment scheme in which the transmitters carefully mix information symbols with artificial noises to ensure confidentiality. Achieving positive secure degrees of freedom (SDoF) is challenging due to the delayed nature of CSIT, and the distributed nature of the transmitters. Our scheme works over two phases: Phase one, in which each transmitter sends information symbols mixed with artificial noises, and repeats such transmission over multiple rounds. In the next phase, each transmitter uses the delayed CSIT of the previous phase and sends a function of the net interference and artificial noises (generated in previous phase), which is simultaneously useful for all receivers. These phases are designed to ensure the decodability of the desired messages while satisfying the secrecy constraints. We present our achievable scheme for three models, namely: (1) K-user interference channel with confidential messages (IC-CM), and we show that SDoF is achievable; (2) K-user interference channel with an external eavesdropper (IC-EE); and (3) K-user IC with confidential messages and an external eavesdropper (IC-CM-EE). We show that for the K-user IC-EE, SDoF is achievable, and for the K-user IC-CM-EE, is achievable. To the best of our knowledge, this is the first result on the K-user interference channel with secrecy constrained models and delayed CSIT that achieves an SDoF which scales with , square-root of number of users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.